LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanistic aspects in the photodynamic inactivation of Candida albicans sensitized by a dimethylaminopropoxy porphyrin and its equivalent with cationic intrinsic charges.

Photo by priscilladupreez from unsplash

Photocytotoxic effect induced by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]porphyrin (TAPP) and 5,10,15,20-tetrakis[4-(3-N,N,N-trimethylaminepropoxy)phenyl]porphyrin (TAPP+4) was examined in Candida albicans to obtain information on the mechanism of photodynamic action and cell damage. For this purpose, the… Click to show full abstract

Photocytotoxic effect induced by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]porphyrin (TAPP) and 5,10,15,20-tetrakis[4-(3-N,N,N-trimethylaminepropoxy)phenyl]porphyrin (TAPP+4) was examined in Candida albicans to obtain information on the mechanism of photodynamic action and cell damage. For this purpose, the photokilling of the yeast was investigated under anoxic conditions and cell suspensions in D2O. Moreover, photoinactivation of C. albicans was evaluated in presence of reactive oxygen species scavengers, such as sodium azide and D-mannitol. The results indicated that singlet molecular oxygen was the main reactive species involved in cell damage. On the other hand, the binding and distribution of these porphyrins in the cells was observed by fluorescence microscopy. Morphological damage was studied by transmission electron microscopy (TEM), indicating modifications in the cell envelopment. Furthermore, deformed cells were observed after photoinactivation of C. albicans by toluidine blue staining. In addition, modifications in the cell envelope due to the photodynamic activity was found by scanning electron microscopy (SEM). Similar photodamage was observed with both porphyrin, which mainly produced alterations in the cell barriers that lead to the photoinactivation of C. albicans.

Keywords: aspects photodynamic; microscopy; photoinactivation albicans; porphyrin; candida albicans; mechanistic aspects

Journal Title: Photodiagnosis and photodynamic therapy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.