LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The truncated human beta-defensin 118 can modulate lipopolysaccharide mediated inflammatory response in RAW264.7 macrophages

Photo by paipai90 from unsplash

The family of human β-defensins consists of small cysteine-rich peptides, which are receiving significant attention due to their antimicrobial activity. The N-terminal cysteine motif of β-defensin is considered to contribute… Click to show full abstract

The family of human β-defensins consists of small cysteine-rich peptides, which are receiving significant attention due to their antimicrobial activity. The N-terminal cysteine motif of β-defensin is considered to contribute to its biological activity. Human β-defensin 118 (DEFB 118) is a particular anion β-defensin expressed predominantly in the male reproductive tract, but its physiological activity has not yet been revealed. In order to verify the potential role of the N-terminal domain of DEFB118 peptide in the regulation of infection, the truncated β-defensin core region of DEFB118 peptide was expressed with IMPACT-pTWIN1 system in Escherichia coli. Herein, the purified homogeneous DEFB118 peptide was identified by mass spectrometry and circular dichroism spectroscopy. The in vitro experiments revealed that DEFB118 peptide exhibited prominent LPS-binding potency (KD: 2.94 nM). Moreover, the DEFB118 core peptide significantly inhibited the mRNA level of LPS-induced inflammatory cytokines including IL-α, IL-1β, IL-6 and TNF-α in RAW264.7 cells, and correspondingly decreased secretion of IL-6 and TNF-α. We concluded that strong binding of DEFB118 to LPS might prevent LPS from binding to its receptor, and hence inhibited cytokines secretion. The results of this study may be a benefit to elucidate the immune protection of DEFB118 in the male reproductive tract.

Keywords: defensin; raw264; truncated human; defb118 peptide; defensin 118; human beta

Journal Title: Peptides
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.