LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chlorine dioxide enhances lipid peroxidation through inhibiting calcium-independent cellular PLA2 in larvae of the Indianmeal moth, Plodia interpunctella.

Photo by mifrira from unsplash

Polyunsaturated fatty acids usually undergo lipid peroxidation induced by reactive oxygen species (ROS). Calcium-independent cellular phospholipase A2 (iPLA2) can maintain fatty acid compositions in phospholipids depending on physiological conditions. An… Click to show full abstract

Polyunsaturated fatty acids usually undergo lipid peroxidation induced by reactive oxygen species (ROS). Calcium-independent cellular phospholipase A2 (iPLA2) can maintain fatty acid compositions in phospholipids depending on physiological conditions. An insect iPLA2 (Pi-iPLA2) was predicted from the transciptome of the Indianmeal moth, Plodia interpunctella. It encodes 835 amino acids. It possesses five ankyrin repeats in the N terminal and patatin lipase domain in the C terminal. Pi-iPLA2 was expressed in all developmental stages of the Indianmeal moth. In the larval stage, it was expressed in all tissues tested. RNA interference (RNAi) specific to Pi-iPLA2 was performed using specific double-stranded RNA (dsRNA). It resulted in almost 70% of reduction in gene expression. Under such RNAi condition, P. interpunctella exhibited significant accumulation of lipid peroxidation based on the amount of malondialdehyde. RNAi of Pi-PLA2 expression also impaired cellular immune response of P. interpunctella. Chlorine dioxide (ClO2), an insecticidal agent by generating ROS, increased lipid peroxidation in a dose-dependent manner. However, the addition of vitamin E (an antioxidant) reduced the formation of lipid peroxidation. ClO2 treatment significantly reduced expression of Pi-iPLA2 but increased lipid peroxidation in larval fat body of P. interpunctella. Furthermore, larvae treated with dsRNA specific to Pi-iPLA2 were significantly susceptible to ClO2 treatment. These results suggest that Pi-iPLA2 plays a crucial role in repairing damaged fatty acids from phospholipids. Our results also suggest that ClO2 can elevate lipid peroxidation through inhibiting Pi-iPLA2 expression in addition to direct ROS production.

Keywords: ipla2; indianmeal moth; lipid peroxidation; peroxidation; calcium independent; interpunctella

Journal Title: Pesticide biochemistry and physiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.