LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure-dependent receptor subtype selectivity and G protein subtype preference of heterocyclic agonists in heterologously expressed silkworm octopamine receptors.

Photo from wikipedia

(R)-Octopamine (OA), a major invertebrate biogenic amine, plays an important role in a wide variety of physiological processes as a neurohormone, neuromodulator, and neurotransmitter in insects. OA receptors (OARs) are… Click to show full abstract

(R)-Octopamine (OA), a major invertebrate biogenic amine, plays an important role in a wide variety of physiological processes as a neurohormone, neuromodulator, and neurotransmitter in insects. OA receptors (OARs) are class A G protein-coupled receptors that specifically bind OA to activate downstream signaling cascades by coupling to G proteins and presumably other regulatory proteins. These receptors are broadly classified as α- and β-adrenergic-like OARs (α- and β-ALOARs). OARs are considered important targets of insecticides and acaricides. In the present study, we examined the actions of an array of 13 heterocyclic OAR agonists with the moieties that correspond to the phenyl group and the basic nitrogen atom of OA on α- and β-ALOARs from the silkworm (Bombyx mori) and the signaling pathways activated through these actions. The results indicated that these compounds display structure-dependent receptor subtype selectivity and G protein subtype preference, underscoring the need to determine which subtype and signaling pathway mediates toxicologically relevant effects for the efficient discovery of novel pest control chemicals. The results of insecticidal assays using B. mori larvae suggested that the activation of signal transduction pathways via α-ALOARs might be mainly responsible for the toxicological effects of the heterocycles.

Keywords: subtype selectivity; dependent receptor; receptor subtype; subtype; selectivity protein; structure dependent

Journal Title: Pesticide biochemistry and physiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.