LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of the geometrical features of flow paths on the flow capacity of a control valve trim

Photo by matthardy from unsplash

Abstract Control valves are an integral part of a number of energy systems, such as those used in chemical and nuclear industries. These valves are used to regulate the amount… Click to show full abstract

Abstract Control valves are an integral part of a number of energy systems, such as those used in chemical and nuclear industries. These valves are used to regulate the amount of fluid flow passing through these systems. A key component of a control valve is its trim, which in case of a multi-stage continuous-resistance trim consists of a staggered arrangement of columns. Flow passing through the channels formed between adjacent columns (also called as flow paths), loses a significant amount of its energy and regulates the pressure field. As the geometrical features of these flow paths dictate the flow capacity of the trim, systematic investigations have been carried out to analyse the complex flow behaviour within these flow paths. Well-verified computational fluid dynamics based solver has been used to investigate the effects of the geometrical features of flow paths on the flow capacity of the trim, at various valve opening positions. It has been noticed that reducing the size of flow paths increases the flow capacity of the trim, however, at a critical flow path size, the inherent opening characteristics of a trim have been observed to alter. In order to recover the original opening behaviour of the trim, careful manipulation of the flow paths is required, which has been successfully achieved in the present investigation.

Keywords: features flow; control; flow capacity; flow paths; geometrical features

Journal Title: Journal of Petroleum Science and Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.