LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lower threshold of pore-throat diameter for the shale gas reservoir: Experimental and molecular simulation study

Photo from wikipedia

Abstract Low-field nuclear magnetic resonance (LF-NMR), high-speed centrifuge and low-pressure nitrogen adsorption (LPNA) experiments were conducted on shale samples from the Lower Silurian Longmaxi Formation to measure pore-throat parameters of… Click to show full abstract

Abstract Low-field nuclear magnetic resonance (LF-NMR), high-speed centrifuge and low-pressure nitrogen adsorption (LPNA) experiments were conducted on shale samples from the Lower Silurian Longmaxi Formation to measure pore-throat parameters of the shale reservoir. We measured bound water saturation, helium porosity, bulk density, specific surface area, and pore-size distribution to evaluate reservoir quality. The thickness of the bound water film was calculated based on the equation established from these parameters, showing that its thickness ranges from 1.07 nm to 2.73 nm, with a mean of 1.72 nm. In addition, Grand Canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations were carried out to estimate the methane adsorption capacity and the number of the adsorbed layers in pores with different sizes at the given temperature and pressure (393.15 K, 65 MPa). The simulation results demonstrate that methane is unanimously adsorbed into pores

Keywords: reservoir; pore throat; simulation; lower threshold

Journal Title: Journal of Petroleum Science and Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.