LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of sorptive interaction between phosphonate inhibitor and barium sulfate for oilfield scale control

Photo from wikipedia

Abstract In both offshore deepwater and shale fields, a large amount of produced water will be generated during field operations. One consequence of significant produced water production from the field… Click to show full abstract

Abstract In both offshore deepwater and shale fields, a large amount of produced water will be generated during field operations. One consequence of significant produced water production from the field is mineral scale formation. Barium sulfate (barite) is one of the toughest scales to manage in oilfield. To combat scale issues, scale inhibitor has been widely adopted to inhibit scale deposition. Previous studies have confirmed that sorptive interactions between chemical inhibitor and scale particles play a vital role in scale prevention and control. Although extensive studies have been carried out on inhibitor-scale interaction, a comprehensive understanding of inhibition is yet available and the detailed sorptive interaction between inhibitor and mineral scale is not fully understood. In this study, experimental efforts have been made to explore the governing mechanism of sorptive behavior of a common phosphonate inhibitor onto the surface of barite particles. Adsorption and desorption experiments involving phosphonate and barite were carried out over a wide range of physiochemical conditions in a systematic manner. It shows that both adsorption and desorption of inhibitor to and from barite surfaces proceed rapidly. At a low phosphonate concentration, surface adsorption mechanism accounts for the interaction between phosphonate and barite. The release of phosphonate inhibitor from the barite surface is controlled by the dissolution dynamics of the formed Ca-phosphonate precipitate. This study is the first report of investigation of barite with phosphonate inhibitor with low and ultra-low concentrations as well as the inhibitory mechanism. The obtained results will improve our understanding of the interaction between phosphonate inhibitors and mineral scale. The findings can provide fundamental information that can benefit the inhibition performance and efficiency for barite scale control in oilfield operations.

Keywords: scale; phosphonate inhibitor; phosphonate; inhibitor; interaction phosphonate

Journal Title: Journal of Petroleum Science and Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.