LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Skin dose calculation during radiotherapy of head and neck cancer using deformable image registration of planning and mega-voltage computed tomography scans

Photo from wikipedia

Background and Purpose Head-Neck (HN) patients may experience severe acute skin complications that can cause treatment interruption and increase the risk of late fibrosis. This study assessed a method for… Click to show full abstract

Background and Purpose Head-Neck (HN) patients may experience severe acute skin complications that can cause treatment interruption and increase the risk of late fibrosis. This study assessed a method for accurately monitoring skin dose changes during helical tomotherapy for HN cancer based on deformable image registration of planning computed tomography (CT) and mega-voltage CT (MVCT). Materials and Methods Planning CTs of nine patients were deformably registered to mid-treatment MVCT (MV15) images resulting in CTdef images. The original plans were recalculated on both CTdef and mid-treatment kilo-voltage CT (CT15) taken as ground truth. Superficial layers (SL) of the body with thicknesses of 2, 3 and 5 mm (SL2, SL3, SL5) were considered as derma surrogates. SL V95%, V97%, V98%, V100%, V102%, V105% and V107% of the prescribed PTV dose were extracted for CT15/CTdef and compared (considering patients with skin dose > 95%). For comparison, doses were calculated directly on the calibrated MVCT and analyzed in the same way. Results Differences between SL2/SL3/SL5 V95%-V107% in CT15/CTdef were very small: for eight of nine patients the difference between the considered SL2 Vd% computed on CTdef and CT15 was less than 1.4 cm3 for all d%. A larger value was found when using MVCT for skin dose calculation (4.8 cm3 for SL2), although CTdef body contour matched CT15 body with accuracy similar to that of MV15. Conclusions Deforming the planning CT-to-MVCT was shown to be accurate considering external body contours and skin DVHs. The method was able to accurately identify superficial overdosing.

Keywords: deformable image; voltage; image registration; skin dose; ctdef; head neck

Journal Title: Physics and Imaging in Radiation Oncology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.