LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Histone H4R3 symmetric di-methylation by Prmt5 protects against cardiac hypertrophy via regulation of Filip1L/β-catenin.

Photo by averey from unsplash

BACKGROUND AND PURPOSE Although histone lysine methylation has been extensively studied for their participation in pathological cardiac hypertrophy, the potential regulatory role of histone arginine methylation remains to be elucidated.… Click to show full abstract

BACKGROUND AND PURPOSE Although histone lysine methylation has been extensively studied for their participation in pathological cardiac hypertrophy, the potential regulatory role of histone arginine methylation remains to be elucidated. The present study focused on H4R3 symmetric di-methylation (H4R3me2s) induced by protein arginine methyltransferase 5 (Prmt5), and explored its epigenetic regulation and underlying mechanisms in cardiomyocyte hypertrophy. METHODS AND RESULTS 1. The expressions of Prmt5 and H4R3me2s were suppressed in cardiac hypertrophy models in vivo and in vitro; 2. Prmt5 silencing or its inhibitor EPZ, or knockdown of cooperator of Prmt5 (Copr5) to disrupt H4R3me2s, facilitated cardiomyocyte hypertrophy, whereas overexpression of wild type Prmt5 rather than the inactive mutant protected cardiomyocytes against hypertrophy; 3. ChIP-sequence analysis identified Filip1L as a target gene of Prmt5-induced H4R3me2s; 4. Knockdown or inhibition of Prmt5 impaired Filip1L transcription and subsequently prevented β-catenin degradation, thus augmenting cardiomyocyte hypertrophy. CONCLUSIONS the present study reveals that Prmt5-induced H4R3me2s ameliorates cardiomyocyte hypertrophy by transcriptional upregulation of Filip1L and subsequent enhancement of β-catenin degradation. Deficiency of Prmt5 and the resulting suppression of H4R3me2s might facilitate the development of pathological cardiac hypertrophy. Prmt5 might serve as a key epigenetic regulator in pathological cardiac hypertrophy.

Keywords: cardiac hypertrophy; methylation; h4r3me2s; prmt5; hypertrophy; histone

Journal Title: Pharmacological research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.