LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biased allosteric modulation of formyl peptide receptor 2 leads to distinct receptor conformational states for pro- and anti-inflammatory signaling.

Photo from wikipedia

BACKGROUND AND PURPOSE Formyl peptide receptor 2 (FPR2) is a Class A G protein-coupled receptor (GPCR) that interacts with multiple ligands and transduces both proinflammatory and anti-inflammatory signals. These ligands… Click to show full abstract

BACKGROUND AND PURPOSE Formyl peptide receptor 2 (FPR2) is a Class A G protein-coupled receptor (GPCR) that interacts with multiple ligands and transduces both proinflammatory and anti-inflammatory signals. These ligands include weak agonists and modulators that are produced during inflammation. The present study investigates how prolonged exposure to FPR2 modulators influence receptor signaling. EXPERIMENTAL APPROACH Fluorescent biosensors of FPR2 were constructed based on single-molecule fluorescent resonance energy transfer (FRET) and used for measurement of ligand-induced receptor conformational changes. These changes were combined with FPR2-mediated signaling events and used as parameters for the conformational states of FPR2. Ternary complex models were developed to interpret ligand concentration-dependent changes in FPR2 conformational states. KEY RESULTS Incubation with Ac2-26, an anti-inflammatory ligand of FPR2, decreased FRET intensity at picomolar concentrations. In comparison, WKYMVm (W-pep) and Aβ42, both proinflammatory agonists of FPR2, increased FRET intensity. Preincubation with Ac2-26 at 10 pM diminished W-pep-induced Ca2+ flux but potentiated W-pep-stimulated β-arrestin2 membrane translocation and p38 MAPK phosphorylation. The opposite effects were observed with 10 pM of Aβ42. Neither Ac2-26 nor Aβ42 competed for W-pep binding at the picomolar concentrations. CONCLUSIONS AND IMPLICATIONS The results support the presence of two allosteric binding sites on FPR2, each for Ac2-26 and Aβ42, with high and low affinities. Sequential binding of the two allosteric ligands at increasing concentrations induce different conformational changes in FPR2, providing a novel mechanism by which biased allosteric modulators alter receptor conformations and generate pro- and anti-inflammatory signals.

Keywords: anti inflammatory; conformational states; receptor; peptide receptor; formyl peptide

Journal Title: Pharmacological research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.