Abstract Community structure reveals useful information in domains of sociology, biology, physics and computer science. In this work, an overlapping community detection algorithm for large-scale networks based on local expansion… Click to show full abstract
Abstract Community structure reveals useful information in domains of sociology, biology, physics and computer science. In this work, an overlapping community detection algorithm for large-scale networks based on local expansion is proposed, in which we present a novel seeding method. And we optimize conductance of communities by: (1) modifying inaccurate community affiliations by node movements; (2) combining densely overlapping communities with a novel combining function; (3) finding communities for the outliers with our proposed theorem. Experimental results in synthetic networks show that the optimization largely enhance the community accuracy. Experimental results in large real-world networks show that our approach is superior to the others in the state of the art.
               
Click one of the above tabs to view related content.