LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spray pyrolysis synthesis of a semi-transparent p-CuCrO2/n-ZnO heterojunction: Structural, optical, and electrical properties

Photo by jneric from unsplash

Abstract A CuCrO2/ZnO heterojunction diode was successfully fabricated by ultrasonic spray pyrolysis. The high quality of the layers constituting the diode was determined by XRD, SEM, Ellipsometry, I–V and Impedance… Click to show full abstract

Abstract A CuCrO2/ZnO heterojunction diode was successfully fabricated by ultrasonic spray pyrolysis. The high quality of the layers constituting the diode was determined by XRD, SEM, Ellipsometry, I–V and Impedance spectroscopy measurements, as well as by their optical properties. Backscattered electron microscopy allowed to resolve each layer of the junction. The high density of the films was inferred through the refractive index of the films: 2.02 and 1.97 for the ZnO and the CuCrO2 layers, respectively. I–V measurements showed the characteristic rectification of the diodes, approaching a figure of 107 @ ± 4.5 V. Impedance spectroscopy results showed four different activation energies attributed to the bulk conductivities of CuCrO2 and ZnO, and to the CuCrO2–ZnO and Au–CuCrO2 junctions. The %T of the diode varied from 20% at 400 nm up to 70% at 700 nm, leading to a device that can be classified and used as a semi-transparent diode.

Keywords: spray pyrolysis; cucro2 zno; zno heterojunction; semi transparent; spectroscopy; cucro2

Journal Title: Physica B: Condensed Matter
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.