LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The spectrum of the torus profile to a geometric variational problem with long range interaction

Photo by joelfilip from unsplash

Abstract The profile problem for the Ohta–Kawasaki diblock copolymer theory is a geometric variational problem. The energy functional is defined on sets in R 3 of prescribed volume and the… Click to show full abstract

Abstract The profile problem for the Ohta–Kawasaki diblock copolymer theory is a geometric variational problem. The energy functional is defined on sets in R 3 of prescribed volume and the energy of an admissible set is its perimeter plus a long range interaction term related to the Newtonian potential of the set. This problem admits a solution, called a torus profile, that is a set enclosed by an approximate torus of the major radius 1 and the minor radius q . The torus profile is both axially symmetric about the z axis and reflexively symmetric about the x y -plane. There is a way to set up the profile problem in a function space as a partial differential-integro equation. The linearized operator L of the problem at the torus profile is decomposed into a family of linear ordinary differential-integro operators L m where the index m = 0 , 1 , 2 , … is called a mode. The spectrum of L is the union of the spectra of the L m ’s. It is proved that for each m , when q is sufficiently small, L m is positive definite. ( 0 is an eigenvalue for both L 0 and L 1 , due to the translation and rotation invariance.) As q tends to 0 , more and more L m ’s become positive definite. However no matter how small q is, there is always a mode m of which L m has a negative eigenvalue. This mode grows to infinity like q − 3 / 4 as q → 0 .

Keywords: profile; variational problem; geometric variational; torus profile; problem

Journal Title: Physica D: Nonlinear Phenomena
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.