LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An asynchronous solution to the synchronisation problem for binary one-dimensional cellular automata

Photo by julienlphoto from unsplash

Abstract Because cellular automata rely on totally local and synchronous processing at the neighbourhood of each cell, the issue of global synchronisation of the cell states has a long tradition… Click to show full abstract

Abstract Because cellular automata rely on totally local and synchronous processing at the neighbourhood of each cell, the issue of global synchronisation of the cell states has a long tradition in cellular automata literature. Here, the following benchmark synchronisation problem in the context of one-dimensional binary cellular automata rule is addressed: in periodic boundary condition, a rule needs to be conceived so as to lead any initial configuration to converge, at some time in future, to a cyclic regime of period 2 characterised by all cells alternating between fully homogeneous configurations of 0s and 1s. In spite of its simplicity, the problem has recently been shown not to have a solution by synchronously updating the cell states. In contrast, we provide a perfect solution to the problem, with a 4-neighbour rule, by replacing the synchronous update of the cells of the lattice with a deterministic, block sequential asynchronous update schedule. Achieving synchrony by asynchronous means represents an example that makes it evident the fact that asynchrony can be explored to give more freedom to the cells of a CA, in terms of the local information they exchange with each other. Since synchronisation phenomena and problems are pervasive in many contexts in science and engineering, it is a valuable resource to understand how synchronisation can be achieved and controlled in simple computational models, such as cellular automata.

Keywords: one dimensional; synchronisation; synchronisation problem; cellular automata; solution

Journal Title: Physica D: Nonlinear Phenomena
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.