Abstract In this work, different regions of a graphene device were exposed to a 30 keV helium ion beam creating a series of alternating strips of vacancy-type defects and pristine graphene.… Click to show full abstract
Abstract In this work, different regions of a graphene device were exposed to a 30 keV helium ion beam creating a series of alternating strips of vacancy-type defects and pristine graphene. From magnetoconductance measurements as function of temperature, density of carriers and density of strips we show that the electron-electron interaction is important to explain the logarithmic quantum corrections to the Drude conductivity in graphene with vacancies. It is known that vacancies in graphene behave as local magnetic moments that interact with the conduction electrons and leads to a logarithmic correction to the conductance through the Kondo effect. However, our work shows that it is necessary to account for the non-homogeneity of the sample to avoid misinterpretations about the Kondo physics due the difficulties in separating the electron-electron interaction from the Kondo effect.
               
Click one of the above tabs to view related content.