LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Markov model of quantum fluctuations at the transition to lasing of semiconductor nanolasers

Photo from wikipedia

A Markov model of semiconductor nanolaser is constructed in order to describe finely the effects of quantum fluctuations in the dynamics of the laser, in particular by considering the transition… Click to show full abstract

A Markov model of semiconductor nanolaser is constructed in order to describe finely the effects of quantum fluctuations in the dynamics of the laser, in particular by considering the transition to lasing. Nanolasers are expected to contain only a small number of emitters, whose semiconductor bands are simulated using true carrier energy states. The model takes into account carrier-carrier interactions in the conduction and valence bands, but the result is a huge Markov chain that is often too demanding for direct Monte-Carlo simulation. We introduce here a technique to split the whole chain into two subchains, one referring to thermalization events within the bands and the other to laser photonic events of interest. The model is applied to the analysis of laser transition and enlightens the coexistence of a pulse regime triggered by the quantum nature of the photon with the birth of the known coherent cw regime. This conclusion is highlighted by calculated time traces. We show that on the ultrasmall scale of nanolasers, we are unable to define perfectly the threshold.

Keywords: quantum fluctuations; semiconductor; transition lasing; model; markov model

Journal Title: Physica E: Low-dimensional Systems and Nanostructures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.