LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of carrier density and mobility variations in graphene caused by surface adsorbates

Photo from wikipedia

Abstract Conductivity, carrier concentration and carrier mobility in graphene were investigated as a function of time in response to ionized donor and acceptor adsorbates. While a reduction in conductivity and… Click to show full abstract

Abstract Conductivity, carrier concentration and carrier mobility in graphene were investigated as a function of time in response to ionized donor and acceptor adsorbates. While a reduction in conductivity and hole density in graphene was observed upon exposure to a weak electron donor NH3, the carrier mobility was found to increase monotonically. The opposite behavior is observed upon exposure to NO2, which is expected based on its typical electron withdrawing property. Upon exposure to C9H22N2, a strong donor, it resulted in the transformation of graphene from p-type to n-type, although the inverse variation of carrier concentration and mobility was still observed. The variational trends remained unaltered even after intentional introduction of defects in graphene through exposure to oxygen plasma. The responses to C9H22N2, NH3 and NO2 exposures underline a strong influence by ionized surface adsorbates that we explained via a simple model considering charged impurity scattering of carriers in graphene.

Keywords: mobility; density; exposure; carrier; surface adsorbates

Journal Title: Physica E: Low-dimensional Systems and Nanostructures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.