Abstract In this paper the Dirac-Weyl equation on a hyperbolic surface of graphene under magnetic fields is considered. In order to solve this equation analytically for some cases, we will… Click to show full abstract
Abstract In this paper the Dirac-Weyl equation on a hyperbolic surface of graphene under magnetic fields is considered. In order to solve this equation analytically for some cases, we will deal with vector potentials symmetric under rotations around the z axis. Instead of using tetrads we will get this equation from a more intuitive point of view by restriction from the Dirac-Weyl equation of an ambient space. The eigenvalues and corresponding eigenfunctions for some magnetic fields are found by means of the factorization method. The existence of a zero energy ground level and its degeneracy is also analysed in relation to the Aharonov-Casher theorem valid for flat graphene.
               
Click one of the above tabs to view related content.