LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Time-reversal-invariant topological superconductivity in one and two dimensions

Photo from wikipedia

Abstract A topological superconductor is characterized by having a pairing gap in the bulk and gapless self-hermitian Majorana modes at its boundary. In one dimension, these are zero-energy modes bound… Click to show full abstract

Abstract A topological superconductor is characterized by having a pairing gap in the bulk and gapless self-hermitian Majorana modes at its boundary. In one dimension, these are zero-energy modes bound to the ends, while in two dimensions these are chiral gapless modes traveling along the edge. Majorana modes have attracted a lot of interest due to their exotic properties, which include non-abelian exchange statistics. Progress in realizing topological superconductivity has been made by combining spin–orbit coupling, conventional superconductivity, and magnetism. The existence of protected Majorana modes, however, does not inherently require the breaking of time-reversal symmetry by magnetic fields. Indeed, pairs of Majorana modes can reside at the boundary of a time-reversal-invariant topological superconductor (TRITOPS). It is the time-reversal symmetry which then protects this so-called Majorana Kramers’ pair from gapping out. This is analogous to the case of the two-dimensional topological insulator, with its pair of helical gapless boundary modes, protected by time-reversal symmetry. Realizing the TRITOPS phase will be a major step in the study of topological phases of matter. In this paper we describe the physical properties of the TRITOPS phase, and review recent proposals for engineering and detecting them in condensed matter systems, in one and two spatial dimensions. We mostly focus on extrinsic superconductors, where superconductivity is introduced through the proximity effect. We emphasize the role of interplay between attractive and repulsive electron–electron interaction as an underlying mechanism. When discussing the detection of the TRITOPS phase, we focus on the physical imprint of Majorana Kramers’ pairs, and review proposals of transport measurement which can reveal their existence.

Keywords: superconductivity; time reversal; time; majorana modes

Journal Title: Physics Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.