LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptome profiling of two Dactylis glomerata L. cultivars with different tolerance in response to submergence stress.

Photo by cdc from unsplash

Submergence is one of the environmental stresses that limit plant growth and development. Dactylis glomerata L. is an important cool-season forage grass globally. To investigate the genes related to submergence… Click to show full abstract

Submergence is one of the environmental stresses that limit plant growth and development. Dactylis glomerata L. is an important cool-season forage grass globally. To investigate the genes related to submergence response and the molecular mechanism associated with submergence tolerance, the transcriptome of D. glomerata in response to waterlogging treatment was analyzed. RNA-sequencing was performed in two D. glomerata cultivars, submergence tolerant 'Dianbei' and submergence sensitive 'Anba'. A total of 50,045 unique genes matched the known proteins in the NCBI nr database by BLAST searches and 60.8% (30,418) of these genes were annotated with GO terms. Among these, 1395 genes only differentially expressed in 'Dianbei' and 18 genes shown different expression all the time were detected between the submergence tolerant 'Dianbei' and sensitive 'Anba'. Gene ontology (GO) and KEGG pathway enrichment analyses demonstrated that the DEGs were mainly implicated in oxidation-reduction system, nucleic acid binding transcription factor activity, and glycerol kinase activity. The D. glomerata assembled transcriptome provided substantial molecular resource for further genomic analysis of forage grasses in response to submergence stress. The significant difference in expression of specific unigenes may account for waterlogging tolerance or acclimation in the two different D. glomerata cultivars. This study provided new insights into the molecular basis of submergence tolerance in D. glomerata.

Keywords: dactylis glomerata; submergence; response; tolerance; response submergence; glomerata cultivars

Journal Title: Phytochemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.