LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effects of extracellular matrix rigidity on 3-dimensional cultures of amnion membrane cells.

Photo from wikipedia

INTRODUCTION To determine 3D growth of amnion membrane cells using soft substrate plates of various rigidities. METHODS Amnion epithelial (AEC) and mesenchymal cells (AMC) were cultured on 6-well soft substrate… Click to show full abstract

INTRODUCTION To determine 3D growth of amnion membrane cells using soft substrate plates of various rigidities. METHODS Amnion epithelial (AEC) and mesenchymal cells (AMC) were cultured on 6-well soft substrate plates coated with matrigel and elastomer with rigidities of 0.5, 2, 8, 16, and 64 kPa (n = 3 each). Controls were cells in standard culture conditions. Cell morphology, spheroids' and sheets' formations and viability (bright field microscopy and crystal violet staining), and cellular transitions (vimentin/cytokeratin-18 [CK-18] ratios) were analyzed. A Student t-test was used for statistical analyses. RESULTS AECs in substrate rigidities between 2 and 8 kPa formed 3D features (spheroids and sheets) while retaining viability. Two kPa produced spheroids with epithelial characteristics (decrease in vimentin), and 8 kPa favored sheets. Transplantation and culture of AEC sheets with no matrix or elastomers, retained AECs' viability and maintained their epithelial characteristics. Optimum AMC growth was also between 2 and 8 kP A, with predominance of vimentin; however, AMCs did not form 3D structures. Lower and higher rigidities transitioned AMCs into AECs (decrease in vimentin). DISCUSSION Matrix rigidities between 2 and 8 kPa produced 3D structures of AECs (spheroids and sheets), resembling amnion membranes' morphology and exhibiting regenerative capacity in utero. Although AMCs grew in similar rigidities, a lack of 3D structures support their dispersed character in the membrane matrix. Extreme rigidities transitioned AMCs into AECs, suggesting that AMCs are transient cells (reservoirs) in the matrix required for remodeling. Compromises in matrix rigidity can cause membrane dysfunction and lead to adverse pregnancy outcomes.

Keywords: matrix rigidity; membrane cells; rigidities kpa; amnion membrane; membrane

Journal Title: Placenta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.