LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stem and leaf traits as co-determinants of canopy water flux

Photo from wikipedia

Transpiration through stomata in tree canopies plays an important role in terrestrial water cycles. However, the empirical relationship between leaf stomata anatomy and canopy stomatal conductance (Gs) is surprisingly rare,… Click to show full abstract

Transpiration through stomata in tree canopies plays an important role in terrestrial water cycles. However, the empirical relationship between leaf stomata anatomy and canopy stomatal conductance (Gs) is surprisingly rare, thereby the underlying biological mechanisms of terrestrial water flux are not well elucidated. To gain further insight into these mechanisms, we reanalyzed the dataset of Gs previously reported by Gao et al. (2015) using a quantile regression model. The results indicated that the reference Gs (Gsref, Gs at 1 kPa) was negatively correlated with wood density at each quantile, which confirmed previous data; however, Gsref was significantly correlated with stomatal density at the 0.6 quantile, i.e., 450 stomata mm−2. This highlighted the potential of using stomatal density as a trait to predict canopy water flux. A conceptual model of co-determinants of xylem and stomatal morphology suggests that these traits and their coordination may play a critical role in determining tree growth, physiological homeostatic response to environmental variables, water use efficiency, and drought resistance.

Keywords: water flux; water; stem leaf; canopy water; leaf traits

Journal Title: Plant Diversity
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.