Brain activity and communications are complex phenomena that dynamically unfold over time. However, in contrast with the large number of studies reporting neuroanatomical differences in activation relative to young adults,… Click to show full abstract
Brain activity and communications are complex phenomena that dynamically unfold over time. However, in contrast with the large number of studies reporting neuroanatomical differences in activation relative to young adults, changes of temporal dynamics of neural activity during normal and pathological aging have been grossly understudied and are still poorly known. Here, we synthesize the current state of knowledge from MEG and EEG studies that aimed at specifying the effects of healthy and pathological aging on local and network dynamics, and discuss the clinical and theoretical implications of these findings. We argue that considering the temporal dynamics of brain activations and networks could provide a better understanding of changes associated with healthy aging, and the progression of neurodegenerative disease. Recent research has also begun to shed light on the association of these dynamics with other imaging modalities and with individual differences in cognitive performance. These insights hold great potential for driving new theoretical frameworks and development of biomarkers to aid in identifying and treating age-related cognitive changes.
               
Click one of the above tabs to view related content.