LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reducing Zn diffusion in single axial junction InP nanowire solar cells for improved performance

Photo from wikipedia

Abstract In this work axial n-i-p junction InP nanowires were grown by selective-area metal organic vapor phase epitaxy (SA-MOVPE) technique with the growth sequence starting from n-segment. The optical properties… Click to show full abstract

Abstract In this work axial n-i-p junction InP nanowires were grown by selective-area metal organic vapor phase epitaxy (SA-MOVPE) technique with the growth sequence starting from n-segment. The optical properties and carrier lifetimes of the n-, i- and p-type segments were studied and compared using time-resolved photoluminescence (PL) and cathodoluminescence (CL) measurements. We demonstrate for the first time that CL is capable of resolving the electrical profile of the nanowires, namely the varied lengths of the n-, i- and p-segments, providing a simple and effective approach for nanowire growth calibration and optimization. The CL result was further confirmed by electron beam induced current (EBIC) and photocurrent mapping measurements performed from the fabricated single nanowire solar cell devices. It is revealed that despite a non-optimized device structure (very long n-region and short i-region), the n-i-p nanowire solar cells show improved power conversion efficiency (PCE) than the previously reported p-i-n (growth starts with p-segment) single nanowire solar cells due to reduced p-type dopant (Zn) diffusion during the growth of n-i-p solar cell structure.

Keywords: axial junction; junction inp; nanowire; nanowire solar; solar cells

Journal Title: Progress in Natural Science: Materials International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.