LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The first principle calculation of elemental-vacancy-assisted modifications on structural properties and optical responses of ZnO system

Photo from wikipedia

Abstract The structural properties and optical responses of ZnO0.94 and Zn0.94O systems as the possible models of ZnO system containing elemental defect states were studied using the plane-wave method within… Click to show full abstract

Abstract The structural properties and optical responses of ZnO0.94 and Zn0.94O systems as the possible models of ZnO system containing elemental defect states were studied using the plane-wave method within the generalized gradient approximation. The pristine ZnO system was used as the reference. The simulated XRD patterns showed the three highest intensity for (100), (002), and (101) orientations for all the systems. Compared to O vacancy, Zn vacancy mostly provided higher structure factor shifts of ZnO system. Moreover, the strongest local-symmetry distortion at ZnO4 tetrahedra was implied in Zn0.94O system. The optical responses showed that all the systems exhibited the optical dichroism based on the extinction coefficient spectra. Interestingly, Zn0.94O system showed the lowest energy levels of absorption and high-reflectance edges. Additionally, the highest saturation threshold energy of the effective number of valence electrons was obtained for this system. The result emphasizes the importance of Zn vacancy in providing the significant effect on the optical responses of ZnO system.

Keywords: system; structural properties; vacancy; zno system; optical responses

Journal Title: Progress in Natural Science: Materials International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.