LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dehydrogenative amide synthesis from alcohols and amines utilizing N-heterocyclic carbene-based ruthenium complexes as efficient catalysts: The influence of catalyst loadings, ancillary and added ligands

Photo from archive.org

Abstract The metal-catalyzed dehydrogenative coupling of alcohols and amines to access amides has been recognized as an atom-economic and environmental-friendly process. Apart from the formation of the amide products, three… Click to show full abstract

Abstract The metal-catalyzed dehydrogenative coupling of alcohols and amines to access amides has been recognized as an atom-economic and environmental-friendly process. Apart from the formation of the amide products, three other kinds of compounds (esters, imines and amines) may also be produced. Therefore, it is of vital importance to investigate product distribution in this transformation. Herein, N-heterocyclic carbene-based Ru (NHC/Ru) complexes [Ru-1]-[Ru-5] with different ancillary ligands were prepared and characterized. Based on these complexes, we selected condition A (without an added NHC precursor) and condition B (with an added NHC precursor) to comprehensively explore the selectivity and yield of the desired amides. After careful evaluation of various parameters, the Ru loadings, added NHC precursors and the electronic/steric properties of ancillary NHC ligands were found to have considerable influence on this catalytic process.

Keywords: alcohols amines; carbene based; added nhc; dehydrogenative amide; heterocyclic carbene

Journal Title: Polyhedron
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.