LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

X-ray visible microspheres derived from highly branched biodegradable poly(lactic acid) terminated by triiodobenzoic acid: Preparation and degradation behavior

Photo from wikipedia

Abstract Biodegradable polyesters with X-ray visibility for biomedical applications have attracted increasing attention. We herein reported a facile method of end-chain functionalization to prepare highly branched linear-comb poly (lactic acid)… Click to show full abstract

Abstract Biodegradable polyesters with X-ray visibility for biomedical applications have attracted increasing attention. We herein reported a facile method of end-chain functionalization to prepare highly branched linear-comb poly (lactic acid) (Lc-PLA) using triiodobenzoic acid (TIBA) as end-capping and X-ray contrast agent. Three branch lengths of iodinated linear-comb poly (lactic acid) (I-Lc-PLA30k, I-Lc-PLA50k, and I-Lc-PLA70k) were successfully synthesized and then microspheres with well-controlled size (average size ~180 μm) were prepared. By micro-CT testing, the results showed that shorter branch length of PLA contributed more iodinated end-group functionalized sites, leading a relatively high iodine content and excellent radiopacity. After terminated with TIBA, glass transition temperature and thermal stability of I-Lc-PLA polymers were greatly improved. During the in vitro hydrolytic degradation of three months, the molecular weight, iodine content, surface microstructure and micro-CT radiopacity of these microspheres were investigated. The degradation results showed that I-Lc-PLA50k possessed sufficient iodine content and high household unit values, suggesting a well-maintained radiopacity of I-Lc-PLA. Therefore, this work proposed a highly branched I-Lc-PLA microspheres with promising CT-imaging capacity, which could be used as a long-term embolic material.

Keywords: degradation; poly lactic; pla; highly branched; acid; lactic acid

Journal Title: Polymer Degradation and Stability
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.