LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A study of molecular architectural dynamics of crosslinked urethane during photo-aging by two-dimensional infrared correlation spectroscopy

Photo from wikipedia

Abstract The molecular architecture changes of crosslinked urethane during photo-oxidation was investigated by Fourier transform infrared spectroscopy (FTIR) in combination with two-dimensional (2D) correlation analysis. The 2D correlation FTIR spectroscopy… Click to show full abstract

Abstract The molecular architecture changes of crosslinked urethane during photo-oxidation was investigated by Fourier transform infrared spectroscopy (FTIR) in combination with two-dimensional (2D) correlation analysis. The 2D correlation FTIR spectroscopy provided insight into molecular architectural dynamics during photo-aging, where the sequential order of peak changes was determined upon perturbation with photo-aging. Photo-oxidation was monitored from the decrease in the peak intensity at 1537 cm−1 (attributed to the urethane group) and the generation of the hydrogen bonded C =O groups at 1698 cm−1 immediately after urethane decomposition. Several notable peaks appeared (1712, 1650, and 1750 cm−1) in the later stages, which were attributed to the free photo-oxidative product. In summary, photo-oxidation involved a cleavage of urethane crosslink and generation of end groups that formed hydrogen bonds with surrounding hydrogen bonding sites. Further degradation of the free photo-products was observed likely because of the small number of accessible hydrogen bonding sites due to the increasing heterogeneity of the internal structure.

Keywords: urethane photo; crosslinked urethane; photo aging; photo; correlation; spectroscopy

Journal Title: Polymer Degradation and Stability
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.