LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large area fabrication of graphene nanoribbons by wetting transparency-assisted block copolymer lithography

Photo from wikipedia

Abstract Patterning graphene into nanoribbons (graphene nanoribbons, GNR) allows for tunability in the emerging fields of plasmonic devices in the mid-infrared and terahertz regime. However, the fabrication processes of GNR… Click to show full abstract

Abstract Patterning graphene into nanoribbons (graphene nanoribbons, GNR) allows for tunability in the emerging fields of plasmonic devices in the mid-infrared and terahertz regime. However, the fabrication processes of GNR arrays for plasmonic devices often include a low-throughput electron beam lithography step that cannot be easily scaled to large areas. In this study, we developed a GNR fabrication method using block copolymer (BCP) lithography that takes advantage of the wetting transparency of graphene. One major advantage of this method is that the self-assembled domains of the polystyrene- block -poly(methyl methacrylate) BCP are oriented perpendicularly directly on top of the graphene where they can later serve as an etch mask. Large area (cm 2 scale, 3 μm × 3 μm defect-free area) 13–51 nm wide GNR arrays were successfully fabricated using this scalable protocol. This wetting transparency-assisted GNR fabrication method could be useful for high-throughput production of various plasmonic devices, including biosensors, and photodetectors.

Keywords: block; graphene nanoribbons; fabrication; lithography; wetting transparency

Journal Title: Polymer
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.