LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Crystalline microstructure and dielectric properties of oriented poly(ethylene-co-tetrafluoroethylene)

Photo from wikipedia

Abstract In the present investigation, we explore the influence of uniaxial orientation and subsequent thermal annealing on semi-crystalline poly(ethylene-tetrafluoroethylene) (ETFE) microstructure and dynamics, and the connection to dielectric breakdown strength.… Click to show full abstract

Abstract In the present investigation, we explore the influence of uniaxial orientation and subsequent thermal annealing on semi-crystalline poly(ethylene-tetrafluoroethylene) (ETFE) microstructure and dynamics, and the connection to dielectric breakdown strength. Understanding the influence of crystalline microstructure on dynamics and breakdown, and in turn how processing influences microstructure, is critical for establishing rational design of polymer dielectrics. When drawn below the glass transition temperature (Tg), the Weibull breakdown strength decreases compared to that of the undrawn precursor film, but increases on thermal annealing near or above Tg. This behavior is associated with the formation and elimination of drawing-induced microvoids, respectively. When drawn above Tg, the breakdown strength increases to ∼870 MV/cm, dominated by orientation of amorphous segments, and decreases on thermal annealing above Tg to near that of the undrawn film.

Keywords: crystalline microstructure; poly ethylene; ethylene tetrafluoroethylene; crystalline; microstructure

Journal Title: Polymer
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.