LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitroxide radical-containing nanoparticles as potential candidates for overcoming drug resistance in epidermoid cancers

Photo from wikipedia

Abstract Multidrug resistance in cancer cells contributes to the failure of conventional chemotherapy in more than 90% of cancer patients (metastatic). This is attributed to reactive oxygen species (ROS)-regulated drug… Click to show full abstract

Abstract Multidrug resistance in cancer cells contributes to the failure of conventional chemotherapy in more than 90% of cancer patients (metastatic). This is attributed to reactive oxygen species (ROS)-regulated drug efflux proteins, P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1). In this study, we focused on overcoming multidrug resistance with a therapeutic application of ROS-scavenging nitroxide radical-containing nanoparticles, RNPN (pH-sensitive) and RNPO (pH-insensitive), in combination with the conventional chemotherapeutic drug, doxorubicin (Dox), in drug-resistant epidermoid cancer cell lines, KB-C2 (P-gp expressing) and KB/MRP (MRP1 expressing). We confirmed that the combination treatment with RNPs increased Dox uptake in multidrug-resistant cancer cells, which further enhanced cell cytotoxicity. The abrogation of the crucial ROS signaling was confirmed with RNP treatment, which deterred ROS-regulated drug efflux protein (P-gp and MRP1) expression, resulting in the sensitization of resistant cells to Dox. These results establish ROS-scavenging RNPs as potential therapeutic candidates to overcome drug resistance in multidrug-resistant cancers.

Keywords: drug resistance; containing nanoparticles; drug; radical containing; resistance; nitroxide radical

Journal Title: Polymer
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.