LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular influence in high-strain-rate microparticle impact response of poly(urethane urea) elastomers

Photo by martindorsch from unsplash

Abstract The dynamic deformation response of select model poly(urethane urea) elastomers (PUU) at high strain rates is investigated via an all-optical laser-induced projectile impact test (LIPIT). LIPIT measurements allow the… Click to show full abstract

Abstract The dynamic deformation response of select model poly(urethane urea) elastomers (PUU) at high strain rates is investigated via an all-optical laser-induced projectile impact test (LIPIT). LIPIT measurements allow the direct visualization of the impact of micro-projectiles (silica spheres) on substrates and in-situ characterization, including depth of penetration and the extent of rebound of the micro-projectiles. PUUs are proven to be robust and the silica spheres are observed to rebound from them upon impact. In addition, for PUUs a strong correlation was noted between the coefficient of restitution and the maximum depth of penetration. Also, the coefficient of restitution data is comparable to that of glassy polycarbonate (PC), which is in great contrast to the comparison of the corresponding ambient storage modulus data obtained via dynamic mechanical analysis at 1 Hz. We hypothesize that high-rate deformation-induced glass transition is a plausible molecular relaxation mechanism towards macroscopic, dynamic stiffening/strengthening in PUUs.

Keywords: response; urethane urea; high strain; impact; poly urethane; urea elastomers

Journal Title: Polymer
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.