Abstract Ultra-high molecular weight polyethylene (UHMWPE; Mw = 103 kg/mol) is blended with a low molecular weight, linear polyethylene (PEwax; Mw = 1 kg/mol) and the solid state drawing behavior and mechanical properties are explored. The… Click to show full abstract
Abstract Ultra-high molecular weight polyethylene (UHMWPE; Mw = 103 kg/mol) is blended with a low molecular weight, linear polyethylene (PEwax; Mw = 1 kg/mol) and the solid state drawing behavior and mechanical properties are explored. The results indicate that the low molecular weight polyethylene wax acts as a solvent for the UHMWPE which leads to an improvement in rheological properties and the maximum attainable draw ratio of the blends. The maximum attainable Young's modulus of the drawn films increases with more than a factor 2 without removal of the solvent. Moreover, it is found that the maximum attainable tensile strength of the drawn blends also increases significantly from ∼1 GPa to ∼1.5 GPa upon addition of 60 wt% of the PEwax. Based on these results, a new route is proposed for the processing of highly oriented polyethylene, which has certain characteristics in common with both melt spinning and solution spinning but, in fact, is neither of the two.
               
Click one of the above tabs to view related content.