Abstract Inspired by the nature material, a crosslinked network structure of polyurethane/epoxy resin composite material was built through Diels-Alder (DA) reversible covalent bond reaction between the dienes and dienophile group… Click to show full abstract
Abstract Inspired by the nature material, a crosslinked network structure of polyurethane/epoxy resin composite material was built through Diels-Alder (DA) reversible covalent bond reaction between the dienes and dienophile group on the side chain of epoxy resin and polyurethane respectively. The synthesized composite material combined the advantages of polyurethane and epoxy resin. The hard segments of polyurethane and epoxy resin were closely combined through the DA reaction and high density hydrogen bonding. The strength, hardness and toughness of the composite material were greatly enhanced. DA covalent bonds can be reversible with varying the temperature, which led to the heat reprocessing ability of the synthesized composite material. The well-established structure-property relationship shown in this paper could further provide guidance for fabrication of high performance recyclable material with precisely controllable microstructures and behaviors.
               
Click one of the above tabs to view related content.