LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alkali Metal Cation Adduct Effect on Polybutylene Adipate Oligomers: Ion Mobility-Mass Spectrometry.

Photo by grab from unsplash

Polyurethane (PU) di-block copolymers are one of the most versatile polymeric materials, comprised of hard and soft segments that contribute to PU's broad range of applications. Polybutylene adipate (PBA) is… Click to show full abstract

Polyurethane (PU) di-block copolymers are one of the most versatile polymeric materials, comprised of hard and soft segments that contribute to PU's broad range of applications. Polybutylene adipate (PBA) is a commonly used soft segment in PU systems. Characterizing the structure of PBA polymers is essential to understanding complex heterogeneity within a PU sample. In this study, ion mobility-mass spectrometry (IM-MS) and tandem mass spectrometry (MS/MS) are used to structurally characterize a PBA standard (Mn = 2250) adducted with a combination of monovalent alkali cations (Li, Na, K, Rb, and Cs). IM-MS profiles show unique trends associated with each cation-adducted PBA sample. Charge state trends: +1, +2, and +3 were extracted for cation-adducted PBA oligomers, and investigated to study gas-phase transitional folding. To quantitatively assess the gas-phase structural similarities and differences, a statistical test (ANOVA) was used to compare PBA oligomer-cation collisional cross sections (CCS). Fragmentation studies (MS/MS) identified the unique behavior of Li and Na for promoting 1,5 H-shift and 1,3 H-shift fragmentation, whereas the PBA precursor preferentially loses the larger K, Rb, and Cs cations as the ion activation energy is increased. The combination of adducted alkali cations, IM-MS, and MS/MS allow for unique structural characterization of this important PBA system.

Keywords: ion mobility; cation; polybutylene adipate; mass spectrometry

Journal Title: Polymer
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.