LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fully bio-based polymer blend of polyamide 11 and Poly(vinylcatechol) showing thermodynamic miscibility and excellent engineering properties

Photo by louishansel from unsplash

Abstract Fully bio-based polyamide 11 (PA11) and poly(vinylcatechol) (PVCa) blends prepared by melt mixing demonstrate thermodynamic miscibility and excellent engineering properties. The glass transition temperature (Tg) of PA11 increases upon… Click to show full abstract

Abstract Fully bio-based polyamide 11 (PA11) and poly(vinylcatechol) (PVCa) blends prepared by melt mixing demonstrate thermodynamic miscibility and excellent engineering properties. The glass transition temperature (Tg) of PA11 increases upon blending with PVCa; an 85/15 wt% PA11/PVCa blend exhibits a Tg 23–26 °C higher than that of PA11 devoid of additives. Morphological observations revealed that the PA11/PVCa blends do not phase-separate, confirming the homogeneity of PA11 and PVCa. Good chemical resistance of the PA11/PVCa blends was confirmed, with the blends resisting morphological changes even after immersion in methanol, which is a good solvent for PVCa. Tensile testing revealed that the PA11/PVCa blends have higher moduli and strengths than PA11. A PA11/nonpolar polystyrene blend was also examined by the same experimental procedure, which revealed that strong hydrogen bonding between PA11 and PVCa is the primary reason for the miscibility and excellent performance of PA11/PVCa blends.

Keywords: miscibility excellent; pvca; pa11 pvca; pvca blends

Journal Title: Polymer
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.