LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Increasing the temperature range of dipolar glass polymers through copolymerization: A first approach to dipolar glass copolymers

Photo from wikipedia

Abstract This work introduces, for the first time, the dipolar glass copolymer concept as a new strategy to develop polymer dielectrics. Methacrylic monomers containing sulfone and nitrile groups were copolymerized… Click to show full abstract

Abstract This work introduces, for the first time, the dipolar glass copolymer concept as a new strategy to develop polymer dielectrics. Methacrylic monomers containing sulfone and nitrile groups were copolymerized with N-vinyl-2-pyrrolidone, achieving the preparation of 9 new copolymers with higher dielectric properties than conventional polymer dielectrics. These copolymers, besides exhibiting dielectric constant values between 5.3 and 8.2 and dissipation factors below 0.022, compared to their respective poly(methacrylate) homopolymers, exhibit higher Tg values allowing to delay, on the temperature scale, the occurrence of highly dissipative phenomena (e.g. α relaxation and ionic conductivity). Therefore, these new dipolar glass copolymers can be considered as polymers with high dielectric constants, reasonably low loss values and broader working temperature ranges than conventional polymers dielectrics. Finally, results presented in this work reveal the significant effect that dipolar interactions within the material could have on the dielectric properties of these systems, opening a new research line based on the design of new dipolar glass copolymers with outstanding dielectric performance.

Keywords: temperature range; glass; dipolar glass; increasing temperature; glass copolymers

Journal Title: Polymer
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.