LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Increased fracture toughness of additively manufactured semi-crystalline thermoplastics via thermal annealing

Photo from wikipedia

Abstract Polymeric components manufactured via freeform fabrication (FFF) typically have poor inter-laminar toughness resulting from incomplete bonding across layers during production. Here we study the effect of printing and post-processing… Click to show full abstract

Abstract Polymeric components manufactured via freeform fabrication (FFF) typically have poor inter-laminar toughness resulting from incomplete bonding across layers during production. Here we study the effect of printing and post-processing on the inter-laminar toughness of additively manufactured semi-crystalline (poly-lactide (PLA)) structures. Specimens were subject to post-print thermal annealing to promote inter-laminar bonding, while post-annealing quenching rates were chosen to vary the induced degree of crystallinity in the final structure, as characterized via dynamic scanning calorimetry (DSC). Critical elastic-plastic strain energy release rates (JIc) of annealed samples were evaluated using the single edge notched bend (SENB) geometry and post-testing fractography. The results show that as-printed PLA adopts an amorphous character with good inter-laminar toughness and ductility. Post-print annealing can double the toughness via increased interfacial wetting, but only if the material is quenched rapidly to preserve the amorphous character. In contrast, post-print annealing followed by slow cooling results in a semi-crystalline state (≈25% crystallinity) with low fracture toughness and brittle fracture behavior.

Keywords: toughness additively; post; semi crystalline; toughness; fracture; inter laminar

Journal Title: Polymer
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.