Abstract The microstructure of polyacrylonitrile (PAN)-based carbon fibers with different mechanical properties was investigated. It was found that the tensile strength of the PAN-based carbon fibers generally decrease with the… Click to show full abstract
Abstract The microstructure of polyacrylonitrile (PAN)-based carbon fibers with different mechanical properties was investigated. It was found that the tensile strength of the PAN-based carbon fibers generally decrease with the increase in the modulus. The properties of PAN-based carbon fiber are mainly controlled by the microstructure and microvoids. The increase in size and orientation of graphite crystallites follows the decrease in interlayer space of graphite sheets, which accompanies the increase in modulus and decrease in tensile strength of the carbon fibers. Simultaneously, the increase in the modulus of the carbon fibers accompanies the merging of the elliptical microvoids along the fiber axis and the turbostratic graphite in the carbon fibers transforms into 3D ordered graphite lamellar structure. This work provides useful information on tailoring the mechanical properties of carbon fibers by adjusting the microstructure.
               
Click one of the above tabs to view related content.