LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anisotropic optical behavior of an amorphous organic polymer locally aligned by inkjet-printing

Photo from wikipedia

Abstract The molecular arrangement of polymeric organic semiconductors alter the macroscopic optoelectronic properties of the material. Most existing solution-based deposition methods are however, limited in both resolution as well as… Click to show full abstract

Abstract The molecular arrangement of polymeric organic semiconductors alter the macroscopic optoelectronic properties of the material. Most existing solution-based deposition methods are however, limited in both resolution as well as pattern design and often result in molecular disorder upon drying. Here, a method for aligning the amorphous polymer polyindenofluoren-8-triarylamine (PIF8-TAA) via inkjet printing is presented. By tuning the printing speed and including different amounts of the solid solvent crystallization agent 1,3,5-trichlorobenzene (TCB), fibrous structures with varying morphology can be fabricated. The resulting optical properties are analyzed using photoluminescence and Raman spectroscopy. The findings show an optical anisotropic behavior dependent on the fiber size and alignment. This is likely caused by the increased molecular arrangement within the structures. Methods enabling tailored structuring of the molecular arrangement in a material, provide the possibility to develop novel applications, as well as to optimize existing devices with improved properties such as, charge carrier transport and emission efficiency.

Keywords: molecular arrangement; anisotropic optical; polymer; behavior; inkjet printing

Journal Title: Progress in Organic Coatings
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.