LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly stable spray dried tuna oil powders encapsulated in double shells of whey protein isolate-agar gum and gellan gum complex coacervates

Photo by primal_harmony from unsplash

Abstract This study was aimed at producing multi-core fish oil powders by developing a double-shelled microencapsulation system using complex coacervation. Whey protein isolate (WPI)-agar gum (WPI-AG) complex coacervates and WPI-gellan… Click to show full abstract

Abstract This study was aimed at producing multi-core fish oil powders by developing a double-shelled microencapsulation system using complex coacervation. Whey protein isolate (WPI)-agar gum (WPI-AG) complex coacervates and WPI-gellan gum (WPI-GG) complex coacervates were used as the inner and outer shells, respectively. Tuna oil was used as a representative core material. The oil was first encapsulated in WPI-AG complex coacervates at pH 4.75 to produce the primary microcapsule. The second microcapsule shell was created by using WPI-GG complex coacervates at the same pH and mixed with the primary microcapsule, followed by the cooling to 15 °C in the presence of calcium ions. The WPI-GG outer shell was clearly visible under a light microscope. The outer shell significantly improved the oxidative stability of the entrapped tuna oil, compared with the microcapsule powder without the outer shell. These spray dried double-shell microcapsule powders had low surface oil (1.8%), high encapsulation efficiency (95.8%) and a high payload (42. 6%). These shells were glassy with glass transition temperature around 53 °C and they acted as effective barriers to transmission of oxygen at ambient temperature.

Keywords: microcapsule; tuna oil; oil; gum; wpi; complex coacervates

Journal Title: Powder Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.