Abstract Catalytically active materials are often dispersed on a catalyst support to increase the contact area for reactions. The catalyst is usually in the form of a coated layer on… Click to show full abstract
Abstract Catalytically active materials are often dispersed on a catalyst support to increase the contact area for reactions. The catalyst is usually in the form of a coated layer on a specific substrate. The service life of catalyst products depends greatly on the strength of the coated layer. In reality, coated layers have been found to fail in both a cohesive and an adhesive way (Yang et al. [ 1 , 2 ]). In contrast to the importance of the strength of these coated layers, there has not been any strength measurement technique that can separately measure the adhesive strength of the coated layer reported in the literature. To address this, the current paper presents a novel technique that is capable of separately measuring the adhesive strength of such coated layer in a reproducible manner. Coated layers were prepared by drying a suspension of γ-alumina particles at set conditions on various substrates followed by calcination. The particle size and pH of the suspension were known. Three different substrates were employed to prepare the coated layer, which were FeCrAlloy, cordierite and alumina. The adhesive strength of the coated layer was found to be influenced by the surface and the structure profile of substrates and the pH of the γ-alumina suspension.
               
Click one of the above tabs to view related content.