LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of drag correlation for suspensions of ellipsoidal particles

Photo by joelfilip from unsplash

Abstract To model drag the current state-of-the-art is to use isolated non-spherical particle drag correlations modified by a solid fraction correlation that is based on experimental or simulation results of… Click to show full abstract

Abstract To model drag the current state-of-the-art is to use isolated non-spherical particle drag correlations modified by a solid fraction correlation that is based on experimental or simulation results of spherical particle suspensions. It is shown that this practice can lead to substantial inaccuracies when the particle geometry deviates significantly from a spherical geometry. In this paper particle resolved simulations (PRS) are conducted for ellipsoids of aspect ratio 5 (AR5) and 10 (AR10) in random suspensions with no preferential orientation. Simulations are performed for a Reynolds number Re = 10 to 200, and solid fraction φ = 0.1 to 0.3 and 0.1 to 0.2 for AR5 and AR10 suspensions, respectively. Combined with PRS data from past studies for spherical particle suspensions and ellipsoids with AR2.5, a drag correlation is developed for the mean drag force in suspension as a function of Re, φ , aspect ratio, and inclination angle θ.

Keywords: correlation; geometry; spherical particle; drag correlation

Journal Title: Powder Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.