Abstract Developments in discrete element modelling (DEM) enable detailed modelling of granular flows in bulk handling equipment (BHE) but due to the computational expense of DEM, wide use in analysing… Click to show full abstract
Abstract Developments in discrete element modelling (DEM) enable detailed modelling of granular flows in bulk handling equipment (BHE) but due to the computational expense of DEM, wide use in analysing equipment performance is not yet feasible. Metamodels are a viable option to effectively use DEM in analysing BHE performance. Metamodels are able to approximate the behaviour of BHE efficiently for a wide range of design parameter values. We present a methodology to construct and validate DEM-based metamodels as well as a discharging hopper case study illustrating the use and benefits of metamodels in combination with DEM. For three different metamodels trained on a DEM data set, the results show that the metamodel quality highly depends on the number of samples and finding proper hyper-parameter values. The constructed metamodels are found capable of adequately representing the relation between performance and design parameters. It is concluded that methodically constructed metamodels are a valuable addition in describing BHE behaviour.
               
Click one of the above tabs to view related content.