LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Particle-free zone of the two-phase flow in a convergent-divergent nozzle

Photo by miguelherc96 from unsplash

Abstract The gas-particle two-phase flow in a convergent-divergent nozzle is encountered in many applications like solid-propellant rocket motors (SRMs). The “Particle-free Zone” adjacent to the nozzle wall is crucial for… Click to show full abstract

Abstract The gas-particle two-phase flow in a convergent-divergent nozzle is encountered in many applications like solid-propellant rocket motors (SRMs). The “Particle-free Zone” adjacent to the nozzle wall is crucial for the nozzle performance which is closely related to the specific impulse of the motor. Though it has been usually observed by many investigators, the existence of the particle-free zone in different nozzles and its effect on nozzle performance are still ambiguous. In this research, we investigated the two-phase flow with monodispersed micron particles in a nozzle using a two-way coupled Eulerian-Lagrangian model and found that the particle-free zone does not exist for smallest particles (dp = 1.0 μm). Moreover, we built a theoretical model for predicting the extent of the particle-free zone by calculating the trajectory of the particle closest to the nozzle wall. The effects of the particle size, total pressure, total temperature and nozzle geometry on the particle-free zone were studied. Finally, we analyzed the nozzle performance and found that the gas velocity at the outlet and the thrust do not change with particle size monotonously, and the medium-sized particles cause the largest thrust loss.

Keywords: particle free; two phase; free zone; phase flow; particle

Journal Title: Powder Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.