Preeclampsia (PE) is characterized by new onset hypertension in association with elevated soluble fms-like tyrosine kinase-1 (sFlt-1) and preproendothelin-1 (PPET-1) levels. Currently there is no effective treatment for PE except… Click to show full abstract
Preeclampsia (PE) is characterized by new onset hypertension in association with elevated soluble fms-like tyrosine kinase-1 (sFlt-1) and preproendothelin-1 (PPET-1) levels. Currently there is no effective treatment for PE except for early delivery of the fetal placental unit, making PE a leading cause for premature births worldwide. Administration of 17-hydroxyprogesterone caproate (17-OHPC) is used for prevention of recurrent preterm birth. This study was designed to test the hypothesis that 17-OHPC improves hypertension and ET-1 in response to elevated sFlt-1 in pregnant rats. sFlt-1 was infused into normal pregnant (NP) Sprague-Dawley rats (3.7 μg·kg-1·day-1 for 6 days, gestation days 13-19) in the presence or absence of 17-OHPC (3.32 mg/kg) administered via intraperitoneal injection on gestational days 15 and 18. Mean arterial blood pressure (MAP), pup and placenta weights, renal cortex PPET-1 mRNA levels and nitrate-nitrite levels were measured on GD 19. Infusion of sFlt-1 into NP rats elevated mean arterial pressure (MAP) compared with control NP rats: 115 ± 1 (n = 13) vs. 99 ± 2 mmHg (n = 12, p < 0.05). 17-OHPC attenuated this hypertension reducing MAP to 102 ± 3 mmHg in sFlt-1 treated pregnant rats (n = 8). Neither pup nor placental weight was affected by sFlt-1 or 17-OHPC. Importantly, renal cortex PPET-1 mRNA levels were elevated 3 fold in NP + sFlt-1 rats compare to NP rats, which decreased with 17-OHPC administration. Plasma nitrate-nitrite levels were 44 ± 9 µM in NP rats (n = 9), 20 ± 3 µM in NP + sFlt-1 (n = 7), which increased to 42 ± 11 µM NP + sFlt-1 + 17OHPC (n = 6). Administration of 17-OHPC improves clinical characteristics of preeclampsia in response to elevated sFlt-1 during pregnancy.
               
Click one of the above tabs to view related content.