LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An efficient assessment of vulnerability of a ship to parametric roll in irregular seas using first passage statistics

Photo from wikipedia

Abstract Unlike the traditional displacement vessels, the modern roll-on roll-off (Ro–Ro), container and cruise vessels designed over the past two decades are seen to be prone to dynamic instabilities, which… Click to show full abstract

Abstract Unlike the traditional displacement vessels, the modern roll-on roll-off (Ro–Ro), container and cruise vessels designed over the past two decades are seen to be prone to dynamic instabilities, which in some cases may lead to capsizing. Although the vulnerability of a design to dynamic instabilities can be assessed through simulations, this approach is time consuming and unsuitable for analyzing several interim designs during the design spiral iterations. Recent global efforts by the International Maritime Organization (IMO) towards a second generation level 2 criterion attempt to adopt a first principles approach without resorting to time consuming numerical simulations or expensive physical model tests. This work provides such a tool for one of the identified capsizing mechanisms known as parametric rolling in a realistic random seaway. The technique of stochastic averaging is applied to a previously developed realistic model for parametric excitation in random waves. A semi-analytic design criterion for the comparative assessment of different hull forms to parametric roll in random seas is formulated in terms first passage statistics of the system. A sensitivity analysis is performed on the C11 container ship hull form to quantify and gain a deeper understanding of the relative importance of both physical parameters (restoring arm and damping) and environmental parameters (wave spectra intensity and characteristic frequency) on the instability.

Keywords: parametric roll; passage statistics; first passage; vulnerability; roll

Journal Title: Probabilistic Engineering Mechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.