LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selection of microbial biocatalysts for the reduction of cyclic and heterocyclic ketones

Photo from archive.org

Abstract The reduction of carbonyl compounds plays an important role in the synthesis of complex chiral molecules. In particular, enantiopure substituted cyclic and heterocyclic compounds are useful intermediates for the… Click to show full abstract

Abstract The reduction of carbonyl compounds plays an important role in the synthesis of complex chiral molecules. In particular, enantiopure substituted cyclic and heterocyclic compounds are useful intermediates for the synthesis of several antiviral, antitumor, and antibiotic agents, and recently, they have also been used as organocatalysts for C-C addition. Alcohol dehydrogenases (ADH) are enzymes involved in the transformation of prochiral ketones to chiral hydroxyl compounds. While significant scientific effort has been paid to the use of aliphatic and exocyclic ketones as ADH substrates, reports on (hetero)cyclic carbonyl compounds as substrates of these enzymes are scarce. In the present study, 109 bacteria and 36 fungi were screened, resulting in 10 organisms belonging to both kingdoms capable of transforming cyclic and heterocyclic ketones into the corresponding alcohols. Among them, Erwinia chrysanthemi could quantitatively reduce cyclododecanone and Geotrichum candidum could stereoselectively reduce N-Boc-3-piperidone and N-Boc-3-pyrrolidinone to their corresponding (S)-alcohols; however, the anti-Prelog isomer was obtained when acetophenone was the substrate.

Keywords: cyclic heterocyclic; heterocyclic ketones; selection microbial; biocatalysts reduction; microbial biocatalysts

Journal Title: Process Biochemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.