LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Assembly of block copolymers into internally ordered microparticles

Photo from wikipedia

Abstract Block copolymer (BCP) self-assembly is one of the most versatile concepts for the bottom-up design of functional nanostructures in materials science, nanomedicine and nanotechnology. While BCPs have been extensively… Click to show full abstract

Abstract Block copolymer (BCP) self-assembly is one of the most versatile concepts for the bottom-up design of functional nanostructures in materials science, nanomedicine and nanotechnology. While BCPs have been extensively studied regarding their microphase separation in bulk and the self-assembly in solution, only recently BCPs were investigated for their ability to form internally ordered microparticles. In this review, we discuss two emerging concepts: (i) the microphase separation of BCPs in the spherical confinement of evaporating emulsion droplets and (ii) the self-assembly of highly asymmetric BCPs under concentrated conditions. While the first concept yields solid and compact multicompartment microparticles suited for the synthesis of shape-anisotropic nanoparticles, photonic colloids, and actuators, the latter produces highly regular porous microparticles with exceptional interfacial area (BCP cubosomes and hexosomes). Despite distinct differences in the origin of both fields, commonalities in shape and morphology suggest an underlying formation mechanism that may link both research directions.

Keywords: assembly block; self assembly; internally ordered; ordered microparticles; block copolymers; copolymers internally

Journal Title: Progress in Polymer Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.