LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications

Photo by chuttersnap from unsplash

Abstract Reversible-deactivation radical polymerization (RDRP) processes, such as atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization and nitroxide mediated polymerization (NMP) have revolutionized polymer synthesis by providing… Click to show full abstract

Abstract Reversible-deactivation radical polymerization (RDRP) processes, such as atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization and nitroxide mediated polymerization (NMP) have revolutionized polymer synthesis by providing polymer chemists with powerful tools that enable control over architecture, composition and chain length distributions. The user-friendly nature of these procedures have allowed RDRP-derived polymers to be used in the construction of advanced materials with unique and enhanced properties. This review covers the progress of RDRP from its conception to the current state-of-the-art. A brief introduction to the sources of RDRP, general mechanisms, and methodological progressions are presented, and the suite of advanced and highly tailorable materials possible through these techniques is discussed to illustrate the significant potential for even greater impact across multiple disciplines.

Keywords: polymerization; reversible deactivation; polymerization controlled; deactivation radical; radical polymerization

Journal Title: Progress in Polymer Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.